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Supplementary Note 1 

 
Definition and abbreviation of variables 

 

rA   weighted averaged ionic radii of cation A  

rB   weighted averaged ionic radii of cation B 

rO   ionic radii of anion O2- 

χA   weighted averaged atomic radii of A 

χB   weighted averaged atomic radii of B 

QA   weighted averaged charged state of cation A 

Nd   weighted average number of d electrons at atom B 

µ    octahedral factor, rB/rO 

t     tolerance factor, 
rA+𝑟O

√2(rB+rO)
 

Note: for oxide perovskites 1 2 1 2

1 1 3
( )( )

x x y y OA A B B− −

, the weighted averaged ionic radii of cation A is 

1 2
(1 )

A A A
r x r x r=  + − 

. 

 

Supplementary Methods 
 

Symbolic regression (SR) 1-4 simultaneously searches for the optimal mathematical formula 

of a function and set of parameters in the function. Therefore, it may overcome the issue of hidden 

black-box and5 make machine learning (ML) model interpretable. In this work, symbolic 

regression is to build straightforward and effective descriptors that are able to link the easily-

accessed materials parameters with catalytic activities. There are three essential parts for SR to 

derive descriptors: primitive function, terminal, and evolutionary algorithm.  
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Primitive function 

The primitive functions are the basic building blocks of mathematical formulas. It may contain 

mathematical operators (+, −, ×, ÷) and common functions (√ , sin, cos, exp, log …). To ensure 

that the final derived descriptors are as simple as possible, we use only simple mathematical 

operators and functions in this work, including (+, −, ×, ÷, √ ). 

 

Terminal 

The terminals are variables and constants in mathematical formula. In this work, I should 

include key materials parameters relevant to the catalytic activity. In this work, we chose the 

terminal set (Nd, χA, χB, rA, QA, t, μ) (QB and rB are trivially dependent on QA and μ, respectively, 

subject to charge balance QA + QB = 6 and rB = μrO). For double perovskite and perovskite alloys, 

the weighted averages of Nd, χA, χB, QA, and rA were taken for A- and B-site cations respectively, 

and t and μ were calculated based on the averaged rA and rB values. The values of terminal sets for 

all perovskites of interest in this work are provided in Tab. 1 and the details for calculating 

averaged values are provided in Supplementary Table 7. 

 

Evolutionary algorithm 

The available primitive functions and terminals provide the basis to compose simple and 

accurate mathematical formula correlating materials parameters (Nd, χA, χB, rA, QA, t, μ) and 

catalytical activity (VRHE). Evolutionary algorithm is the computational algorithm composing 

primitive functions and terminals into mathematical formula. It may include genetic programming, 

grammar evolution, and analytical programming and Bayesian optimization. Here, we chose 

genetic algorithm (GP) for SR (GPSR) as it is the mostly-used algorithm and implemented in 

gplearn code.  

In GPSR, the mathematical formulas are expressed as tree structures which are composed of 

primitive functions and terminals (see examples in Supplementary Figure 12). The flowchart of 

SR can be found in Fig. 2b (simplified version) and Supplementary Figure 11 (detailed version). 

It initially builds a population (Nind =5000) of random mathematical formulas composed of 

primitive functions and terminals, i.e., a random tree structure with random nodes, to represent 

relationships between materials parameters and catalytic activity (VRHE) [Fig. 2b]. The accuracy 

of 5,000 mathematical formulas are evaluated by mean absolute errors (MAE) between formula-

fitting and experimental VRHEs for eighteen known perovskites [box 2 in Fig. 2b]. The algorithm 

selects the best formula (least MAE) into the pool of final solutions set [Fig. 2b]. To generate the 

next generation, a fraction of mathematical formulas (here 1000 formulas) are selected by using a 

tournament method (with tournament size 20) as implemented in gplearn6. Genetic operations of 

crossover and mutation are then performed among them [box 5 in Fig. 2b] to form 1000 new ones 

for the next generations [Fig. 2b]. Examples of crossover and mutation operations are shown in 

Supplementary Figure 10. Another 4000 random formulas are then added to supplement new 

generation up to 5000 formulas in total [Fig. 2b]. The best formula in new generation is then 

selected [Fig. 2b] into the final solution set [Supplementary Figure 2b]. In principles, the procedure 

continues until a good formula with desired function metric (MAE < 0.01 eV) is found or the 

maximum generation reaches NmaxG = 20 [Fig. 2b].  

 

Grid search of hyperparameters 

In GPSR, the results may depend on how crossover and mutation are performed on 1000 

selected formulas in each generation. To mitigate the impact of artificial hyperparameters on final 
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results, we used grid search of hyperparameters. The grid search method was used for hyper-

parameters of pc, ps and parsimony coefficient, as shown in the Tab. 3. There are 18 pc values 

from 0.5 to 0.95 with step of 0.025, 8 ps values and 3 parsimony coefficients. Therefore, a grid 

search contains 18 × 8 × 3 = 432 combinations of hyper-parameters. In each combination of 

hyperparameters [box 0 in Fig. 2b], there are maximum 20 generations and each generation 

produces one best individual, which results in about 8,640 individuals. The Pareto front, showing 

the trade-off between the MAE and complexity, of total 43,200,000 individuals (8640 generations 

× 5000 individuals/generation) is shown in Fig. 3a with density plot. 
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Supplementary Figures 

 

 

Supplementary Figure 1 PXRD data of 18 known oxide perovskites. The first characteristic 

peak of a perovskite structure around 20–25° corresponds to (100) facet, the main peak at 30–35° 

corresponds to (110) facet and 40° corresponds to (111) facet, 45–50° and 55–60° correspond to 

(200) and (211) facets, respectively. Here we cannot exclude the possible existence of oxygen 

vacancies that usually exist in oxide perovskite. For clarity, stoichiometric chemical formulas are 

adopted in this work. 
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Supplementary Figure 2 Comparison of VRHEs of seven oxide perovskite OER catalysts. The 

results from this work (at 5 mA/cm2) are presented in the horizon axis and the results reported by 

Suntivich et al. [Science 334, 1383 (2011)] are presented in the vertical axis. 
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Supplementary Figure 3 The VRHEs dependence on µ/t at current densities of a, 50 µA/cm2. b, 

10 mA/cm2. c, 15 mA/cm2. d, 20 mA/cm2.   
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Supplementary Figure 4 VRHE values, shown according to μ/t, sourced from three recent 

publications. 
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Supplementary Figure 5 VRHE values, shown according to μ/t, of nineteen oxide perovskites 

listed in Table 6 of Ref. 11 [Energy & Environ. Sci. 12, 442-462 (2019)]. The blank filled points 

(No. 5, 6, 7, 14, 15, 16) mean that there are no available data, such as loading amount and surface 

areas in original reference to obtain comparable mass and specific activities. No. 10 had electrolyte 

concentration of 1.0 M KOH, while others with 0.1 M KOH. No. 17 may have high amount of 

oxygen vacancy according to its chemical formula. Note that those VRHE values of nineteen oxide 

perovskites are from eighteen references that are spanning from the year 1979 to 2018. They have 

different loading amount, surface areas and the values are obtained from different measurements 

(intrinsic activity or Tafel slopes). It is surprising that a roughly linear correlation to μ/t is clearly 

observed for probably comparable data (red dots). For more details of data, please refer to Ref. 11. 
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Supplementary Figure 6 PXRD patterns of synthesized oxide perovskite samples containing 

impurities phases. The impurities are labelled by asterisks. Although all samples show mainly 

perovskite structures, there remained a significant amount of impurities that were difficult to 

remove. For example, the peaks at 12° and 24° correspond to the (040) and (111) facets of MnOx, 

respectively, and the peak intensities increased with increasing content of Mn and Cs. We 

speculated that an increase in Cs content may destabilize the structure. The large Mn cations may 

not easily produce a stable perovskite structure with Cs and La, while the same should be true for 

Pr with Ba and Cs, due to the large size difference between Pr and Ba/Cs. 
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Supplementary Figure 7 The comparison of obtained new perovskite oxides with the state-of-

the-art perovskite oxides reported in Ref [8]. 
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Supplementary Figure 8 Pareto front of MAE vs. complexity of 8,640 mathematical forms in 

SR process including twenty-three (eighteen conventional and five new) perovskites, shown via 

density plot. The mathematical forms of A-H were shown in Supplementary Table 3. 
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Supplementary Figure 9 Feature importance analysis.  
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Supplementary Figure 10 The schematic diagrams of four genetic operations used in current 

genetic programming. a, The hoist mutation method selects a subtree of a randomly selected 

subtree from the winner of a tournament and replace the previously selected subtree with it. b, The 

point mutation method randomly selects some nodes from the winner of a tournament and replace 

it with other building blocks. c, The crossover method randomly selects a subtree from the winner 

of a tournament and replace it with a subtree selected at random from the winner of another 

tournament. d, The subtree mutation method randomly selects a subtree from the winner of a 

tournament and replaces it with a subtree generated at random. 
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Supplementary Figure 11 Flowchart of symbolic regression based on genetic algorithm. Each 

generation includes 4000 randomly generated mathematical formulas and 1000 formulas inherited 

from the previous generation. Each generation provides its best formulas (least MAE) to the final 

solution sets 
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Supplementary Figure 12 The examples of the tree structure for sample mathematical 

formulas. a, μ/t + 1.315. b, μ/t2 + 1.316. c, (CA+𝜒A+0.67)0.25+µ. d, (CA
 0.5

+
xA

0.574
)

0.25

+µ. e, 

((χ
A
(χ

B
+CA)

0.5
+CA

 0.5)
0.25

+µ. 
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Supplementary Figure 13 Pareto front of SR based on parameters rA, rB, Nd, χA, χB, QA  
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Supplementary Figure 14 The t-µ map of 534 perovskites (blue circle) with ABO3 and 

A2B’B’’O6 formula found in ICSD. The eighteen training samples are marked as orange triangle 

and five new perovskites in this work are marked as red star. 
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Supplementary Tables 
 

Supplementary Table 1 The VRHEs of eighteen known oxide perovskite OER catalysts 

reported in literature at ~ 5 mA cm-2 in 0.1 M KOH/NaOH. For comparison, the available 

VRHEs reported by other groups in literature are also provided. 

 

Materials 
VRHE (eV)  

(This work) 

VRHE (eV) 

(Reference) 

VRHE 

difference (eV) 
References 

La0.5Pr0.5FeO3 1.725 N/A N/A J. Alloys Comp., 2015, 649, 1260-1266 

PrFeO3 1.758 N/A N/A J. Chem. Sci., 126, 517–525 

LaFeO3 1.758 1.78 -0.028 Nano Energy, 2018, 47, 199-209 

LaMnO3 1.788 1.80 -0.002 ChemSusChem 2016, 9, 1-10 

LaMn0.5Ni0.5O3 1.722 N/A N/A Phys. Rev. B, 65, 184416 

LaNi0.8Fe0.2O3 1.759 1.74 0.019 J. Mater. Chem. A, 2015, 3, 9421-9426 

LaNi0.9Fe0.1O3 1.790 1.77 0.02 J. Mater. Chem. A, 2015, 3, 9421-9426 

Sr0.25La0.75Fe0.5Co0.5O3 1.718 1.76 -0.042 ChemSusChem, 2015, 8, 1058-1065 

LaNiO3 1.707 1.66 0.047 J. Phys. Chem. Lett., 2013, 4, 1254-1259 

LaMn0.5Cu0.5O3 1.774 N/A N/A AIP Conf Proc, 2014, 1591, 1630 

LaCoO3 1.721 1.64 0.081 Chem. Mater., 2014, 26, 3368-3376 

La0.5Ca0.5CoO3 1.682 1.71 -0.028 Mater Res Bull 2000, 35. 1955–1966 

La0.8Sr0.2CoO3 1.688 ~1.63 0.058 Mater. Chem. Phys., 1986, 14, 397-426 

La0.4Sr0.6CoO3 1.695 ~1.63 0.065 Mater. Chem. Phys., 1986, 14, 397-426 

BaFeO3 1.686 N/A N/A Electrochim Acta, 2018, 289, 428-436 

La0.2Sr0.8CoO3 1.681 1.70 -0.019 Int. J. Electrochem. Sci 2016, 11, 8633-8645 

SrCoO3 1.670 1.65 0.02 Nature Chem 2017 9, 457–465 

Ba0.5Sr0.5Co0.8Fe0.2O3 1.639 1.61 0.029 Science 2011, 334, 1383-1385 
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Supplementary Table 2 BET surface areas of measured perovskite oxides. 

 
Order Materials BET (m2 g-1) 

1 LaMnO3 0.311 

2 LaMn0.5Ni0.5O3 0.395 

3 LaNiO3 0.521 

4 LaMn0.5Cu0.5O3 0.372 

5 LaNi0.9Fe0.1O3 0.468 

6 LaNi0.8Fe0.2O3 0.567 

7 LaFeO3 0.258 

8 La0.5Pr0.5FeO3 0.383 

9 PrFeO3 0.447 

10 LaCoO3 0.492 

11 La0.5Ca0.5CoO3 0.762 

12 La0.8Sr0.2CoO3 0.749 

13 Sr0.25La0.75Fe0.5Co0.5O3 0.263 

14 La0.4Sr0.6CoO3 0.482 

15 La0.2Sr0.8CoO3 0.273 

16 SrCoO3 0.483 

17 Ba0.5Sr0.5Co0.8Fe0.2O3 0.300 

18 BaFeO3 0.704 

New Materials 
 

19 Cs0.25La0.75Mn0.5Ni0.5O3 0.527 

20 Cs0.4La0.6Mn0.25Co0.75O3 0.308 

21 Cs0.3La0.7NiO3 0.317 

22 SrNi0.75Co0.25O3 0.314 

23 Sr0.25Ba0.75NiO3 0.237 
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Supplementary Table 3 The eight mathematical formulas at the Pareto front in 

Supplementary Figure 8.   

Point Formulas 
MAE 

(eV) 

Number of 

parameters 
Complexity 

A 
1.751

t
 0.0245 1 3 

B 
1.672

t
+0.681 0.0237 1 5 

C 
1.093

t
+µ0.5 0.0224 2 6 

D 1.804
µ

t
+1 0.0213 2 7 

E 1.073
µ

t2
+1.295 0.0211 2 8 

F 
µ

t(RA-µ)
+1.315 0.0214 3 9 

G 
µ

t
+ (((Q

A
-RA)

0.5)
0.5

+0.744)
0.5

 0.0205 4 12 

H 
µ

t
+((

1.899

t
+1.005Q

A
0.5)

0.5

)

0.5

 0.0203 3 14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

22 

 

Supplementary Table 4 ICP-AAS analysis of Cs0.4La0.6Mn0.25Co0.75O3 and Ba0.75 Sr0.25NiO3 

samples before and after OER test. ICP-AAS indicates the slight leaching of “A”-site atoms, 

which may explain the current variations during the stability test [Adv. Mater. 31, 190083 (2019)]. 
Samples Cs0.4La0.6Mn0.25Co0.75O3 Sr0.25Ba0.75NiO3 

 Metal ions concentrations (ppm) 

Elements Cs La Mn Co Sr Ba Ni 

Before cycling 19.91 30.07 12.48 37.54 11.7 38.03 50.27 

After cycling 18.25 30.62 13.03 38.11 11.29 37.77 50.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 5 The formulas on the Pareto front of Supplementary Figure 13. 



 

 

23 

 

 

Point Formulas 
MAE 

(eV) 
Complexity 

A 0.162+𝑟B 0.0333 1 

B (1.455χ
A
+1.359)

0.5
 0.0322 2 

C (QA
0.5

+1.358)
0.5

 0.0256 3 

D ((QA+𝑟B)
0.5+1.157)

0.5
 0.0248 5 

E (QA
0.5

+(2.225𝑟A)
0.25

)
0.5

 0.0246 6 

F (
(1.733rA)

0.5

χ
B

0.25
+QA

0.5)

0.5

 0.0235 9 

G (
((𝑟B+1.123)rA)

0.5

χ
B

0.25
+QA

0.5)

0.5

 0.0232 11 
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